Resistencias Pull Up/Pull Down en Circuitos Digitales

Las resistencias denominadas Pull up y Pull down, muy empleadas en circuitos electrónicos digitales, no son ningún tipo de resistencia o componente electrónico especial por su construcción, se trata de resistencias comunes que reciben este nombre por su cometido dentro del circuito. Estos nombres son una forma de referirse a ellas de manera corta, a lo que tan aficionado es el mundo técnico y especialmente si se habla en inglés.

¿Qué son las resistencias Pull Up?

Las resistencias Pull-up son utilizadas en circuitos digitales para asegurar en cualquier circunstancia un nivel lógico seguro y definido en una determinada entrada o pin digital. Cabe recordar que en electrónica digital existen tres estados lógicos:

  • Alto (High): Representa la presencia de voltaje eléctrico, también llamado Uno Lógico.
  • Bajo (Low): Representa la ausencia de voltaje eléctrico, también llamado Cero Lógico.
  • Flotante (Floating): Estado de Alta Impedancia (Hi-Z). Desconectado del resto del circuito electrónico.

Seguir leyendo

Principios de Funcionamiento de Sistemas Digitales y su Programación a Bajo Nivel

Se añaden a nuestra Biblioteca dos libros de distribución gratuita con los que comprender los principios en que se basa cualquier sistema digital programable. O qué es realmente lo que mueve nuestro mundo digital al margen de las abstracciones utilizadas por los programadores informáticos, que utilizando lenguajes de alto nivel pueden programarlos sin necesidad de conocer los complejos fundamentos electrónicos con que a bajo nivel se está trabajando.

Un técnico electrónico no es un programador… y debe conocer qué es realmente lo que se mueve a nivel binario.

Pero un técnico electrónico no es un programador, y aunque también programe utilizando lenguajes de alto nivel, su enfoque debe ser muy distinto, y debe conocer qué es realmente lo que se mueve a nivel binario dentro del sistema electrónico digital programable que está diseñando o utilizando.

Seguir leyendo

Arduino Programming Notebook (Edición española) – Brian W. Evans

Añado este libro de distribución gratuita a la modesta Biblioteca de TallerElectronica.com, considerándolo el primer manual de contacto de cualquiera que, sin conocimientos previos, desee iniciarse en el maravilloso mundo de la programación de dispositivos electrónicos usando placas de desarrollo rápido tipo Arduino.

El propósito del autor de este libro fue crear un pequeño manual de consulta rápida sobre los comandos básicos y la sintaxis del lenguaje de programación de Arduino. Para entrar en los contenidos con mayor profundidad se pueden consultar otras páginas web, libros o cursos. Esta decisión hizo que quedaran fuera de su contenido tipos de datos complejos como los arrays o modos avanzados de comunicación serie.

Comenzando con la estructura básica del lenguaje C del que deriva la programación de Arduino, este libro de notas continua con la descripción de los comandos más usuales e ilustra su uso con ejemplos de código.

Arduino_Programing_Notebook_ESDescarga: https://mega.nz/#!n8ImBTAQ!NNX3BgQu

Controlar grandes cargas eléctricas con Arduino

Un modo sencillo de controlar grandes cargas eléctricas con Arduino (o, en general, con cualquier sistema electrónico digital) es mediante el uso de transistores MOSFET.

Veamosló con un ejemplo práctico: Esta sería una forma sencilla de controlar un motor de corriente continua mediante el uso del transistor TIP120, capaz de soportar tensiones de hasta 60 Voltios y corrientes de hasta 5 Amperios.

tip120_dc.png

Del mismo modo, en lugar del motor, se podría haber conectado un relé (relevador) o un contactor de potencia, capaces de controlar cualquier tipo de cargar eléctrica aplicando una pequeña corriente eléctrica a su bobina de activación.

La resistencia de 2.2 KΩ, limita la corriente de la salida digital a algo menos de 2 mA., valor seguro para la placa Arduino, y suficiente para poner en modo conducción el transistor. El diodo (1N4007) conectado entre los bornes del motor, protege al transistor de sobretensiones transitorias producidas durante los cortes bruscos de alimentación eléctrica en cargas inductivas (motores, relés, contactores, y en general, cualquier carga que conste básicamente de un inductor o bobina).

Un ejemplo sencillo de programa para controlar esta carga con la placa Arduino sería:

int TIP120Pin = 9;
void setup()
{
    pinMode(TIP120Pin, OUTPUT);      // Configura puerto como salida.
}

void loop()
{
    digitalWrite(TIP120Pin, HIGH);   // Activa salida.
    delay (5000);                    // Espera durante 5 segundos.
    digitalWrite(TIP120Pin, LOW);    // Deactiva salida.
    delay (5000);                    // Espera durante 5 segundos.
}

En el ejemplo práctico que estamos usando, el motor está controlado por una salida digital del tipo PWM, por lo que además contamos con la posibilidad de variar su velocidad de rotación de un modo tan sencillo como este:

int TIP120Pin = 9;
void setup()
{
    pinMode(TIP120Pin, OUTPUT);      // Configura puerto como salida.
}

void loop()
{
    analogWrite(TIP120Pin, 255);     // Ponemos el motor al 100%
    delay (5000);                    // Espera durante 5 segundos.
    analogWrite(TIP120Pin, 175);     // Reducimos la velociadad del motor.
    delay (5000);                    // Espera durante 5 segundos.
    analogWrite(TIP120Pin, 0);       // Paramos el motor.
    delay (5000);                    // Espera durante 5 segundos.
}

Problemas Resueltos de Electrónica Digital

Para practicar, afianzar o evaluar tus conocimientos, te recomiento el siguiente Manual de Problemas Resueltos de Electrónica Digital del Profesor Felipe Machado.

En este manual se han recopilado algunos de los problemas propuestos en clase y en exámenes de la asignatura Electrónica Digital I de la titulación de Ingeniería de Telecomunicación de la Universidad Rey Juan Carlos (URJC).

Los problemas tratan sobre:

  • Aritmética Binaria.
  • Sistemas de numeración  y codificación.
  • El álgebra de Boole.
  • Diseño de circuitos con puertas lógicas y bloques combinacionales.
  • Diseño de contadores.
  • Análisis de circuitos digitales sencillos.
Problemas Resueltos de Electronica Digital - Machado_Descarga:  https://mega.nz/#!XtBw0bKa

Guía de uso del Algoritmo de Control PID en Arduino

El algoritmo PID (Proporcional Integral Derivativo), es un elemento ampliamente utilizado en Sistemas Autómaticos de Control, cobrando especial importancia en las funciones de realimentación para la corrección de errores o desviación entre el valor medido y el deseado. Además, su uso y correcto ajuste, da lugar a que la respuesta del sistema sea mucho más suave y rápida ante fluctuaciones originadas por los cambios en las condiciones externas que modifican el valor a controlar.

En la siguiente guía se explica su uso práctico utilizando la placa electrónica de desarrollo Arduino.

Guia-de-uso-PID-para-Arduino-OpenLibra-350x459Descarga: https://mega.nz/#!SlpTQL7Q

Introducción básica al uso de microcontroladores

En los siguientes dos videos Edwin Espinosa nos introduce de manera breve y muy clara en el mundo de los microcontroladores y en el uso de una de las familias más extendidas, los PIC (Peripheral Interface Controller) del fabricante Microchip Technology Inc.

 

 

Nuevo Grupo sobre Electrónica y Microcontroladores

Se acaba de crear un Nuevo Grupo en Facebook:
https://www.facebook.com/groups/electronicaymicrocontroladores/

Un lugar donde compartir experiencias o dudas sobre Electrónica‬ en General y todo tipo de ‪‎Microcontroladores‬, o placas de desarrollo tipo ‪‎Arduino‬, ‪‎Raspberry Pi‬ y similares.

Grupo Abierto. Si te interesan estos temas puedes apuntante ya.

Visita al National Museum of Computing in Bletchley, UK.

Si tienes la oportunidad, y te gusta la historia de la Computación o Informática, no deberías dejar de visitar el National Museum of Computing de Bletchley en el Reino Unido. A solo una hora de Londres en trasporte público, se trata de una institución sin ánimo de lucro dedicada a recuperar y reconstruir máquinas de cómputo históricas.

Sus visitantes pueden seguir el desarrollo de la computación, desde los primeros sistemas mecánicos precursores de la computación, los pioneros proyectos ultra-secretos de la década de los 40 con tecnología eléctrica de relés y válvulas electrónicas de vacío, la evolución de las unidades mainframes de los 60 y 70 que redujo su tamaño y precio gracias a los semiconductores, y la auténtica revolución de los sistemas automáticos de cálculo de la mano de la informática personal en la década de 80 con la integración de circuitos electrónicos. Se trata de un auténtico viaje en el tiempo.

Una de sus grandes estrellas es el Colossus, totalmente reconstruido y en funcionamiento. Posiblemente la primera máquina electrónica de análisis numérico automático que ayudó a ganar una guerra.

Nuestro amigo Julian Ilett lo ha visitado recientemente, y realizado el siguiente video que nos dará una idea de lo interesante que resulta la visita:

Si ya has visitado este museo o conoces alguno parecido, agradeceríamos tus comentarnos con opiniones, sugerencias o recomendaciones.